Диференціювання — це метод обчислення співвідношення приросту залежної змінної по відношенню до приросту незалежної змінної x. Це співвідношення приростів називається похідною функції y по змінній x. Якщо говорити більш точно, залежність y від x означає, що y функція від x. Ця функціональна залежність часто позначається y = ƒ(x), де ƒ позначає функцію. Якщо x та y дійсні числа, і якщо графік функції y зображено відносно x, похідна дорівнює нахилу дотичної до цього графіка в кожній точці.
Теорема 1. Похідна сталої дорівнює нулю, тобто якщо у = с, де с = const, то .
Теорема 2. Похідна алгебраїчної суми скінченної кількості диференційовних функцій дорівнює алгебраїчній сумі похідних цих функцій: .
Теорема 3. Похідна добутку двох диференційовних функцій дорівнює добутку першого множника на похідну другого плюс добуток другого множника на похідну першого:
.
Теорема 4. Сталий множник можна виносити за знак похідної:
, де .
Теорема 5. Якщо чисельник і знаменник дробу диференційовні функції (знаменник не перетворюється в нуль), то
похідна дробу також дорівнює дробу, чисельник якого є різницею добутків знаменника на похідну чисельника і чисельника на похідну знаменника, а знаменник є квадратом знаменника початкового дробу: .
Зауваження. Похідну від функції , де , зручно обчислювати як похідну від добутку сталої величини на функцію u (x):
.
Приклад. Обчислити похідну для функції у = tg x.
Таким чином, .
Похідна складної функції. Нехай у = f (u), де , тобто . Функція f (u) називається зовнішньою, а функція — внутрішньою або проміжним аргументом.
Теорема 6. Якщо у = f (u) та — диференційовні функції від своїх аргументів, то похідна складної функції існує і дорівнює .
Таким чином, похідна складної функції дорівнює добутку похідної зовнішньої функції за проміжним аргументом на похідну проміжного аргументу за незалежною змінною.
Похідна неявної функції. Нехай рівняння F (x; y) = 0 визначає у як неявну функцію від х. Надалі будем вважати, що ця функція — диференційована.
Продиференціювавши за х обидві частини рівняння F (x; y) = 0, дістанемо рівняння першого степеня відносно . З цього рівняння легко знайти , тобто похідну неявної функції.
Приклад. Знайти з рівняння .
Оскільки у є функцією від х, то у2 розглядатимемо як складну функцію від х, тобто .
Продиференціювавши по х обидві частини заданого рівняння, дістанемо: . Звідси .
Похідна оберненої функції. Нехай задані дві взаємно обернені диференційовні функції
у = f (х) та .
Теорема 7. Похідна оберненої функції по змінній у дорівнює оберненій величині похідної від прямої функції .
Приклад. Обчислити похідну для функції .
l Задана функція обернена до функції .
Згідно з теоремою 7 можна записати:
.
Звідси .
Якщо в останньому виразі замість у записати х, то дістанемо:
.
Похідна параметрично заданої функції. Нехай функцію від задано параметричними рівняннями:
.
Припустимо, що функції мають похідні, і що функція має обернену функцію , яка також є диференційовною. Тоді визначену параметричними рівняннями функціональну залежність можна розглядати як складну функцію , ( — проміжний аргумент).
На підставі теорем 6 та 7 маємо:
, .
Звідки або .
Знайдена формула дає можливість знаходити похідну від параметрично заданої функції, не знаходячи явної залежності
Приклад. Функцію від задано параметричними рівняннями:
.
Знайти похідну : а) при будь-якому ; б) при .
а) ;
б) .